380 research outputs found

    Joint Frequency Regulation and Economic Dispatch Using Limited Communication

    Full text link
    We study the performance of a decentralized integral control scheme for joint power grid frequency regulation and economic dispatch. We show that by properly designing the controller gains, after a power flow perturbation, the control achieves near-optimal economic dispatch while recovering the nominal frequency, without requiring any communication. We quantify the gap between the controllable power generation cost under the decentralized control scheme and the optimal cost, based on the DC power flow model. Moreover, we study the tradeoff between the cost and the convergence time, by adjusting parameters of the control scheme. Communication between generators reduces the convergence time. We identify key communication links whose failures have more significant impacts on the performance of a distributed power grid control scheme that requires information exchange between neighbors

    Network Interdiction Using Adversarial Traffic Flows

    Full text link
    Traditional network interdiction refers to the problem of an interdictor trying to reduce the throughput of network users by removing network edges. In this paper, we propose a new paradigm for network interdiction that models scenarios, such as stealth DoS attack, where the interdiction is performed through injecting adversarial traffic flows. Under this paradigm, we first study the deterministic flow interdiction problem, where the interdictor has perfect knowledge of the operation of network users. We show that the problem is highly inapproximable on general networks and is NP-hard even when the network is acyclic. We then propose an algorithm that achieves a logarithmic approximation ratio and quasi-polynomial time complexity for acyclic networks through harnessing the submodularity of the problem. Next, we investigate the robust flow interdiction problem, which adopts the robust optimization framework to capture the case where definitive knowledge of the operation of network users is not available. We design an approximation framework that integrates the aforementioned algorithm, yielding a quasi-polynomial time procedure with poly-logarithmic approximation ratio for the more challenging robust flow interdiction. Finally, we evaluate the performance of the proposed algorithms through simulations, showing that they can be efficiently implemented and yield near-optimal solutions

    Survivability in Time-varying Networks

    Get PDF
    Time-varying graphs are a useful model for networks with dynamic connectivity such as vehicular networks, yet, despite their great modeling power, many important features of time-varying graphs are still poorly understood. In this paper, we study the survivability properties of time-varying networks against unpredictable interruptions. We first show that the traditional definition of survivability is not effective in time-varying networks, and propose a new survivability framework. To evaluate the survivability of time-varying networks under the new framework, we propose two metrics that are analogous to MaxFlow and MinCut in static networks. We show that some fundamental survivability-related results such as Menger's Theorem only conditionally hold in time-varying networks. Then we analyze the complexity of computing the proposed metrics and develop several approximation algorithms. Finally, we conduct trace-driven simulations to demonstrate the application of our survivability framework to the robust design of a real-world bus communication network

    Optimizing Age-of-Information in a Multi-class Queueing System

    Get PDF
    We consider the age-of-information in a multi-class M/G/1M/G/1 queueing system, where each class generates packets containing status information. Age of information is a relatively new metric that measures the amount of time that elapsed between status updates, thus accounting for both the queueing delay and the delay between packet generation. This gives rise to a tradeoff between frequency of status updates, and queueing delay. In this paper, we study this tradeoff in a system with heterogenous users modeled as a multi-class M/G/1M/G/1 queue. To this end, we derive the exact peak age-of-Information (PAoI) profile of the system, which measures the "freshness" of the status information. We then seek to optimize the age of information, by formulating the problem using quasiconvex optimization, and obtain structural properties of the optimal solution

    Throughput Optimal Routing in Overlay Networks

    Get PDF
    Maximum throughput requires path diversity enabled by bifurcating traffic at different network nodes. In this work, we consider a network where traffic bifurcation is allowed only at a subset of nodes called \emph{routers}, while the rest nodes (called \emph{forwarders}) cannot bifurcate traffic and hence only forward packets on specified paths. This implements an overlay network of routers where each overlay link corresponds to a path in the physical network. We study dynamic routing implemented at the overlay. We develop a queue-based policy, which is shown to be maximally stable (throughput optimal) for a restricted class of network scenarios where overlay links do not correspond to overlapping physical paths. Simulation results show that our policy yields better delay over dynamic policies that allow bifurcation at all nodes, such as the backpressure policy. Additionally, we provide a heuristic extension of our proposed overlay routing scheme for the unrestricted class of networks
    • …
    corecore